Provably Secure S-Box Implementation Based on Fourier Transform

Emmanuel Prouff, Christophe Giraud & Sébastien Aumônier

Provably Secure S-Box Implementation Based on Fourier Transform - p. 1

Overview

- Differential Power Analysis on block ciphers
- Notion of DPA-resistance
- A new method to protect S-Box
- Application to AES
- Conclusion

Correlate the intermediate values and the power consumption.

- Correlate the intermediate values and the power consumption.
- Countermeasures:

- Correlate the intermediate values and the power consumption.
- Countermeasures:
 - Linear operations: simple

- Correlate the intermediate values and the power consumption.
- Countermeasures:
 - Linear operations: simple
 - Non-linear parts (*i.e.* S-Box): tricky

- Correlate the intermediate values and the power consumption.
- Countermeasures:
 - Linear operations: simple
 - Non-linear parts (*i.e.* S-Box): tricky
 - Re-computation method

- Correlate the intermediate values and the power consumption.
- Countermeasures:
 - Linear operations: simple
 - Non-linear parts (*i.e.* S-Box): tricky
 - Re-computation method
 - Duplication method

- Correlate the intermediate values and the power consumption.
- Countermeasures:
 - Linear operations: simple
 - Non-linear parts (*i.e.* S-Box): tricky
 - Re-computation method
 - Duplication method
 - S-Box secure calculation

Let *M* denote a method to implement the S-Box access using a value depending of a round-key as input.

- Let *M* denote a method to implement the S-Box access using a value depending of a round-key as input.
- The Advantage of an adversary over M is the number of round-keys eliminated by DPA.

- Let \mathcal{M} denote a method to implement the S-Box access using a value depending of a round-key as input.
- The Advantage of an adversary over M is the number of round-keys eliminated by DPA.

- Let \mathcal{M} denote a method to implement the S-Box access using a value depending of a round-key as input.
- The Advantage of an adversary over M is the number of round-keys eliminated by DPA.
- $Adv(\mathcal{M}) = 0 \iff$ all the variables at the unit level of \mathcal{M} are independent from the sensitive input.

Generalities about the Fourier Transform

Provably Secure S-Box Implementation Based on Fourier Transform - p. 5

Generalities about the Fourier Transform

• The Fourier Transform \widehat{F} of a function F defined over \mathbb{F}_2^n is defined by:

$$\forall X \in \mathbb{F}_2^n, \ \widehat{F}(X) = \sum_{A \in \mathbb{F}_2^n} F(A)(-1)^{A \cdot X}$$

where
$$A \cdot X = \sum_{i \in \{0,...,n-1\}} A_i \cdot X_i \mod 2$$
.

Generalities about the Fourier Transform

• The Fourier Transform \widehat{F} of a function F defined over \mathbb{F}_2^n is defined by:

$$\forall X \in \mathbb{F}_2^n, \ \widehat{F}(X) = \sum_{A \in \mathbb{F}_2^n} F(A)(-1)^{A \cdot X}$$

where
$$A \cdot X = \sum_{i \in \{0,...,n-1\}} A_i \cdot X_i \mod 2$$
.
As $\widehat{\widehat{F}} = 2^n F$, we have:

$$\forall X \in \mathbb{F}_2^n, \ F(X) = \frac{1}{2^n} \sum_{A \in \mathbb{F}_2^n} \widehat{F}(A) (-1)^{A \cdot X}$$

$$\forall X \in \mathbb{F}_2^n, \ F(X) = \frac{1}{2^n} \sum_{A \in \mathbb{F}_2^n} \widehat{F}(A) (-1)^{A \cdot X}$$

Provably Secure S-Box Implementation Based on Fourier Transform - p. 6

$$\forall X \in \mathbb{F}_2^n, \ F(X) = \frac{1}{2^n} \sum_{A \in \mathbb{F}_2^n} \widehat{F}(A) (-1)^{A \cdot X}$$

Securely compute F(X) from $\widetilde{X} = X \oplus R_1$ and R_1 ?

$$\forall X \in \mathbb{F}_2^n, \ F(X) = \frac{1}{2^n} \sum_{A \in \mathbb{F}_2^n} \widehat{F}(A) (-1)^{A \cdot X}$$

- Securely compute F(X) from $\widetilde{X} = X \oplus R_1$ and R_1 ?
- Noticing that $A \cdot X = A \cdot \widetilde{X} \oplus R_1 \cdot (\widetilde{X} \oplus A) \oplus \widetilde{X} \cdot R_1$

$$\forall X \in \mathbb{F}_2^n, \ F(X) = \frac{1}{2^n} \sum_{A \in \mathbb{F}_2^n} \widehat{F}(A) (-1)^{A \cdot X}$$

- Securely compute F(X) from $\widetilde{X} = X \oplus R_1$ and R_1 ?
- Noticing that $A \cdot X = A \cdot \widetilde{X} \oplus R_1 \cdot (\widetilde{X} \oplus A) \oplus \widetilde{X} \cdot R_1$
- We obtain:

$$(-1)^{\widetilde{X}\cdot R_1}F(X) = \frac{1}{2^n} \sum_{A \in \mathbb{F}_2^n} \widehat{F}(A)(-1)^{A \cdot \widetilde{X} \oplus R_1 \cdot (\widetilde{X} \oplus A)}$$

$$\forall X \in \mathbb{F}_2^n, \ F(X) = \frac{1}{2^n} \sum_{A \in \mathbb{F}_2^n} \widehat{F}(A) (-1)^{A \cdot X}$$

- Securely compute F(X) from $\widetilde{X} = X \oplus R_1$ and R_1 ?
- Noticing that $A \cdot X = A \cdot \widetilde{X} \oplus R_1 \cdot (\widetilde{X} \oplus A) \oplus \widetilde{X} \cdot R_1$
- We obtain:

$$(-1)^{\widetilde{X}\cdot R_1}F(X) = \frac{1}{2^n} \sum_{A \in \mathbb{F}_2^n} \widehat{F}(A)(-1)^{A \cdot \widetilde{X} \oplus R_1 \cdot (\widetilde{X} \oplus A)}$$

Mask correction performed on-the-fly.

$$(-1)^{\widetilde{X}\cdot R_1}F(X) = \frac{1}{2^n} \sum_{A \in \mathbb{F}_2^n} \widehat{F}(A)(-1)^{A \cdot \widetilde{X} \oplus R_1 \cdot (\widetilde{X} \oplus A)}$$

Provably Secure S-Box Implementation Based on Fourier Transform - p. 7

$$(-1)^{\widetilde{X}\cdot R_1}F(X) = \frac{1}{2^n} \sum_{A \in \mathbb{F}_2^n} \widehat{F}(A)(-1)^{A \cdot \widetilde{X} \oplus R_1 \cdot (\widetilde{X} \oplus A)}$$

Weaknesses:

$$(-1)^{\widetilde{X}\cdot R_1}F(X) = \frac{1}{2^n} \sum_{A \in \mathbb{F}_2^n} \widehat{F}(A)(-1)^{A \cdot \widetilde{X} \oplus R_1 \cdot (\widetilde{X} \oplus A)}$$

Weaknesses:

• $R_1 \cdot \widetilde{X} = 0$ when $X = 11 \cdots 11$

$$(-1)^{\widetilde{X}\cdot R_1}F(X) = \frac{1}{2^n} \sum_{A \in \mathbb{F}_2^n} \widehat{F}(A)(-1)^{A \cdot \widetilde{X} \oplus R_1 \cdot (\widetilde{X} \oplus A)}$$

Weaknesses:

• $R_1 \cdot \widetilde{X} = 0$ when $X = 11 \cdots 11$

$$(-1)^{\widetilde{X}\cdot R_1}F(X) = \frac{1}{2^n} \sum_{A \in \mathbb{F}_2^n} \widehat{F}(A)(-1)^{A \cdot \widetilde{X} \oplus R_1 \cdot (\widetilde{X} \oplus A)}$$

Weaknesses:

• $R_1 \cdot \widetilde{X} = 0$ when $X = 11 \cdots 11$

$$(-1)^{\widetilde{X} \cdot R_1} F(X) = \pm F(X)$$

$$(-1)^{\widetilde{X}\cdot R_1}F(X) = \frac{1}{2^n} \sum_{A \in \mathbb{F}_2^n} \widehat{F}(A)(-1)^{A \cdot \widetilde{X} \oplus R_1 \cdot (\widetilde{X} \oplus A)}$$

- Weaknesses:
 - $R_1 \cdot \widetilde{X} = 0$ when $X = 11 \cdots 11$

•
$$(-1)^{\widetilde{X} \cdot R_1} F(X) = \pm F(X)$$

$$(-1)^{\widetilde{X}\cdot R_1}F(X) = \frac{1}{2^n} \sum_{A \in \mathbb{F}_2^n} \widehat{F}(A)(-1)^{A \cdot \widetilde{X} \oplus R_1 \cdot (\widetilde{X} \oplus A)}$$

Weaknesses:

• $R_1 \cdot \widetilde{X} = 0$ when $X = 11 \cdots 11$

$$(-1)^{\widetilde{X} \cdot R_1} F(X) = \pm F(X)$$

New formula:

$$(-1)^{(\widetilde{X}\oplus R_2)\cdot R_1}F(X) + R_3 = \left\lfloor \frac{1}{2^n} \left(R' + \sum_{A\in\mathbb{F}_2^n} \widehat{F}(A)(-1)^{A\cdot\widetilde{X}\oplus R_1\cdot(\widetilde{X}\oplus A\oplus R_2)} \right) \right\rfloor$$

where $R_2, R_3, R_4 \in \mathbb{F}_2^n$ and $R' = 2^n R_3 + R_4$.

$$(-1)^{(\widetilde{X}\oplus R_2)\cdot R_1}F(X) + R_3 = \left\lfloor \frac{1}{2^n} \left(R' + \sum_{A\in\mathbb{F}_2^n} \widehat{F}(A)(-1)^{A\cdot\widetilde{X}\oplus R_1\cdot(\widetilde{X}\oplus A\oplus R_2)} \right) \right\rfloor$$

$$(-1)^{(\widetilde{X}\oplus R_2)\cdot R_1}F(X) + R_3 = \left\lfloor \frac{1}{2^n} \left(R' + \sum_{A\in\mathbb{F}_2^n} \widehat{F}(A)(-1)^{A\cdot\widetilde{X}\oplus R_1\cdot(\widetilde{X}\oplus A\oplus R_2)} \right) \right\rfloor$$

• We obtain $\pm F(X) + R_3$ and we want $F(X) \oplus R_3$

$$(-1)^{(\widetilde{X}\oplus R_2)\cdot R_1}F(X) + R_3 = \left\lfloor \frac{1}{2^n} \left(R' + \sum_{A\in\mathbb{F}_2^n} \widehat{F}(A)(-1)^{A\cdot\widetilde{X}\oplus R_1\cdot(\widetilde{X}\oplus A\oplus R_2)} \right) \right\rfloor$$

- We obtain $\pm F(X) + R_3$ and we want $F(X) \oplus R_3$
- Procedure based on Goubin's method: $\pm F(X) + R_3 \mapsto F(X) \oplus R_3$

$$(-1)^{(\widetilde{X}\oplus R_2)\cdot R_1}F(X) + R_3 = \left\lfloor \frac{1}{2^n} \left(R' + \sum_{A\in\mathbb{F}_2^n} \widehat{F}(A)(-1)^{A\cdot\widetilde{X}\oplus R_1\cdot(\widetilde{X}\oplus A\oplus R_2)} \right) \right\rfloor$$

- We obtain $\pm F(X) + R_3$ and we want $F(X) \oplus R_3$
- Procedure based on Goubin's method: $\pm F(X) + R_3 \mapsto F(X) \oplus R_3$
- Our new method:

$$(X \oplus R_1, R_1, \widehat{F}) \mapsto (F(X) \oplus R_3, R_3)$$

$$(-1)^{(\widetilde{X}\oplus R_2)\cdot R_1}F(X) + R_3 = \left\lfloor \frac{1}{2^n} \left(R' + \sum_{A\in\mathbb{F}_2^n} \widehat{F}(A)(-1)^{A\cdot\widetilde{X}\oplus R_1\cdot(\widetilde{X}\oplus A\oplus R_2)} \right) \right\rfloor$$

- We obtain $\pm F(X) + R_3$ and we want $F(X) \oplus R_3$
- Procedure based on Goubin's method: $\pm F(X) + R_3 \mapsto F(X) \oplus R_3$
- Our new method:

$$(X \oplus R_1, R_1, \widehat{F}) \mapsto (F(X) \oplus R_3, R_3)$$

Efficiency: exponential in the dimension of the S-Box

Provably Secure S-Box Implementation Based on Fourier Transform - p. 9

Every operations are linear except the S-Box (inversion in \mathbb{F}_{2^8})

- Every operations are linear except the S-Box (inversion in $\mathbb{F}_{2^8})$
- Transform Masking Method : flaw when accessing the S-Box

- Every operations are linear except the S-Box (inversion in $\mathbb{F}_{2^8})$
- Transform Masking Method : flaw when accessing the S-Box
- Remark: each element of \mathbb{F}_{2^8} can be represented as a linear polynomial over \mathbb{F}_{2^4} .

- Every operations are linear except the S-Box (inversion in $\mathbb{F}_{2^8})$
- Transform Masking Method : flaw when accessing the S-Box
- Remark: each element of \mathbb{F}_{2^8} can be represented as a linear polynomial over \mathbb{F}_{2^4} .
- \Rightarrow Tower Field Methods

- Every operations are linear except the S-Box (inversion in $\mathbb{F}_{2^8})$
- Transform Masking Method : flaw when accessing the S-Box
- Remark: each element of \mathbb{F}_{2^8} can be represented as a linear polynomial over \mathbb{F}_{2^4} .
- \Rightarrow Tower Field Methods
- Down to \mathbb{F}_{2^4} and apply our method to protect inversion

AES: implementation results

Comparison of several methods to protect AES against DPA:

Method	Timings (ms)	RAM (bytes)	ROM (bytes)
Straightforward implementation	5	32	1150
This paper	32	39	3100
Oswald et al. (FSE'05)	26	42	3400
Trichina <i>et al.</i> (WISA'04)	21	291	3050

AES: practical study

Provably Secure S-Box Implementation Based on Fourier Transform - p. 11

AES: practical study

AES: practical study

CPA on straightforward method

CPA on our method

using $20\,000$ random plaintexts

Provably Secure S-Box Implementation Based on Fourier Transform - p. 12

 Alternative method to obtain DPA-resistant S-Box implementations

- Alternative method to obtain DPA-resistant S-Box implementations
- The DPA-resistance is proved

- Alternative method to obtain DPA-resistant S-Box implementations
- The DPA-resistance is proved
- Very efficient when working on small fields

- Alternative method to obtain DPA-resistant S-Box implementations
- The DPA-resistance is proved
- Very efficient when working on small fields
- Perspectives:

- Alternative method to obtain DPA-resistant S-Box implementations
- The DPA-resistance is proved
- Very efficient when working on small fields
- Perspectives:
 - Upgrade our security model to take into account High Order DPA

- Alternative method to obtain DPA-resistant S-Box implementations
- The DPA-resistance is proved
- Very efficient when working on small fields
- Perspectives:
 - Upgrade our security model to take into account High Order DPA
 - Find other transformations than the Fourier Transform

